What is the difference between ppm and EC?

Total Dissolved Solids (TDS) is the best measurement of the nutrient concentration of a hydroponic solution. To estimate TDS, one can use a meter that measures the Electric Conductivity (EC) of a solution, and convert the number to TDS in parts per million (ppm). Many meters will do this conversion.

Total dissolved solids (TDS) is typically expressed in parts per million (ppm). It is a measurement of mass and determined by weighing, called a gravimetric analysis. A solution of nutrients dissolved in water at a strength of 700 ppm means that there are 700 milligrams if dissolved solids present for every liter of water. To accurately calculate total dissolved solids (TDS), one would evaporate a measured filtered sample to dryness, and weigh the residue. This type of measurement requires accurate liquid measurement, glassware, a drying oven, and a milligram balance. Example: 50 mL of the 700ppm solution would leave 35 mg of salt at the bottom of a crucible after drying.
Electrical Conductivity (EC) is expressed in siemens per centimeter (s/cm) or milliseimens per centimeter(ms/cm). It can be determined with an inexpensive hand held meter. Nutrient ions have an electrical charge, a whole number, usually a positive or negative 1, 2, or 3. EC is a measurement of all those charges in the solution that conduct electricity. The greater the quantity of nutrient ions in a solution, the more electricity that will be conducted by that solution. A material has a conductance of one siemens if one ampere of electric current can pass through it per volt of electric potential. It is the reciprocal of the ohm, the standard unit of electrical resistance. A siemens is also called a mho (ohm backwards).

For convenience, EC measurements often are converted to TDS units (ppm) by the meter.

The meter cannot directly measure TDS as described above, and instead uses a linear conversion factor to calculate it. Everyone’s nutrient mix is different, so no factor will be exact. The meter uses an approximate conversion factor, because the exact composition of the mix is not known. Conversion factors range from .50 to .72, *depending on the meter manufacturer, which do a good job of approximating a TDS calculation from the meter’s measurement of EC.

* All ppm pens actually measure the value based on EC and then convert the EC value to display the ppm value, having different conversion factors between differing manufacturers is why we have this problem communicating nutrient measurments between one another.
EC is measured in millisiemens per centimeter (ms/cm) or microsiemens per centimeter (us/cm).

One millisiemen = 1000 microsiemens.
EC and CF (Conductivity Factor) are easily converted between each other.
1 ms/cm = 10 CF

"The communication problem"…

So again, the problem is that different ppm pen manufacturers use different conversion factors to calculate the ppm they display. All ppm (TDS, Total Dissolved Solids) pens actually measure in EC or CF and run a conversion program to display the reading in ppm’s.
There are three conversion factors which various manufacturers use for displaying ppm’s…

USA 1 ms/cm (EC 1.0 or CF 10) = 500 ppm
European 1 ms/cm (EC 1.0 or CF 10) = 640 ppm
Australian 1 ms/cm (EC 1.0 or CF 10) = 700 ppm

For example,
Hanna, Milwaukee 1 ms/cm (EC 1.0 or CF 10) = 500 ppm
Eutech 1 ms/cm (EC 1.0 or CF 10) = 640 ppm
Truncheon 1 ms/cm (EC 1.0 or CF 10) = 700 ppm

Calculating the conversion factor

If your meter allows you to switch between EC and TDS units, your conversion factor can be easily determined by dividing one by the other.
Place the probe in the solution and read TDS in ppm. Change to EC on the meter and read EC in ms/cm.
Conversion factor = ppm / ec.

[Note: ms must be converted to us: One millisiemen = 1000 microsiemens (1.0 ms/cm = 1000.0 us/cm)

A note to Organic Growers:

An EC meter has fewer applications for a soil grower because many organic nutrients are not electrically charged or are inert. Things like Superthrive or Fish Emulsion, blood meal, rock phosphate or green sand cannot be measured with a meter reliably when they are applied or in runoff. Meters can only measure electrically charged salts in solution.